Input | Output |
---|---|
Find the least odd prime factor of . | To find the least odd prime factor of (2019^8 + 1), we start by noting that if a prime ( p ) divides (2019^8 + 1), then (2019^8 \equiv -1 \pmod{p}). This implies (2019^{16} \equiv 1 \pmod{p}), so the order of 2019 modulo ( p ) is 16. By Fermat's Little Theorem, the order must divide ( p - 1 ), hence ( p \equiv 1 \pmod{16} ). The primes congruent to 1 modulo 16 are 17, 97, 113, 193, etc. We check the smallest primes:
Since 97 is the smallest prime congruent to 1 modulo 16 that divides (2019^8 + 1), the least odd prime factor is (\boxed{97}). |
{ "id": "gen-1737410104-q92sjn1Vq9KQfYF4sAqi", "provider": "DeepSeek", "model": "deepseek/deepseek-r1", "object": "chat.completion", "created": 1737410104, "choices": [ { "logprobs": null, "finish_reason": "stop", "native_finish_reason": "stop", "index": 0, "message": { "role": "assistant", "content": "To find the least odd prime factor of \\(2019^8 + 1\\), we start by noting that if a prime \\( p \\) divides \\(2019^8 + 1\\), then \\(2019^8 \\equiv -1 \\pmod{p}\\). This implies \\(2019^{16} \\equiv 1 \\pmod{p}\\), so the order of 2019 modulo \\( p \\) is 16. By Fermat's Little Theorem, the order must divide \\( p - 1 \\), hence \\( p \\equiv 1 \\pmod{16} \\).\n\nThe primes congruent to 1 modulo 16 are 17, 97, 113, 193, etc. We check the smallest primes:\n\n1. **Prime 17**: Compute \\(2019 \\mod 17\\):\n - \\(2019 \\equiv 13 \\pmod{17}\\)\n - Calculate \\(13^8 \\mod 17\\):\n - \\(13^2 \\equiv 16 \\pmod{17}\\)\n - \\(13^4 \\equiv 16^2 \\equiv 1 \\pmod{17}\\)\n - \\(13^8 \\equiv 1^2 \\equiv 1 \\pmod{17}\\)\n - Thus, \\(2019^8 + 1 \\equiv 1 + 1 = 2 \\pmod{17}\\), so 17 is not a factor.\n\n2. **Prime 97**: Compute \\(2019 \\mod 97\\):\n - \\(2019 \\equiv 79 \\pmod{97}\\)\n - Calculate \\(79^8 \\mod 97\\):\n - \\(79^2 \\equiv 33 \\pmod{97}\\)\n - \\(79^4 \\equiv 33^2 \\equiv 22 \\pmod{97}\\)\n - \\(79^8 \\equiv 22^2 \\equiv 96 \\pmod{97}\\)\n - Thus, \\(2019^8 + 1 \\equiv 96 + 1 = 97 \\equiv 0 \\pmod{97}\\), so 97 is a factor.\n\nSince 97 is the smallest prime congruent to 1 modulo 16 that divides \\(2019^8 + 1\\), the least odd prime factor is \\(\\boxed{97}\\).", "refusal": "" } } ], "system_fingerprint": "fp_1c5d8833bc", "usage": { "prompt_tokens": 20, "completion_tokens": 3245, "total_tokens": 3265 } }
{ "id": "gen-1737410152-IN7YAcPADoiqZ8wALgjF", "provider": "OpenAI", "model": "openai/gpt-4-turbo", "object": "chat.completion", "created": 1737410152, "choices": [ { "logprobs": null, "finish_reason": "tool_calls", "native_finish_reason": "tool_calls", "index": 0, "message": { "role": "assistant", "content": "{\n \"binary_pass_fail\": true,\n \"additional_feedback\": \"The submission accurately determined the least odd prime factor of 2019^8 + 1 as 97, following a thorough mathematical approach.\"\n}", "refusal": null, "tool_calls": [ { "index": 0, "id": "call_QxHkPSxzDQ03deyQeeNX3eSm", "type": "function", "function": { "name": "get_eval_rating", "arguments": "{\"binary_pass_fail\": true, \"additional_feedback\": \"The submission accurately determined the least odd prime factor of 2019^8 + 1 as 97, following a thorough mathematical approach.\"}" } } ] } } ], "system_fingerprint": "fp_f17929ee92", "usage": { "prompt_tokens": 645, "completion_tokens": 109, "total_tokens": 754 } }