Input | Output |
|---|---|
Find the least odd prime factor of . | To find the least odd prime factor of (2019^8 + 1), we start by noting that if a prime ( p ) divides (2019^8 + 1), then (2019^8 \equiv -1 \pmod{p}). This implies (2019^{16} \equiv 1 \pmod{p}), so the order of 2019 modulo ( p ) is 16. By Fermat's Little Theorem, the order must divide ( p - 1 ), hence ( p \equiv 1 \pmod{16} ). The primes congruent to 1 modulo 16 are 17, 97, 113, 193, etc. We check the smallest primes:
Since 97 is the smallest prime congruent to 1 modulo 16 that divides (2019^8 + 1), the least odd prime factor is (\boxed{97}). |
{
"id": "gen-1737410104-q92sjn1Vq9KQfYF4sAqi",
"provider": "DeepSeek",
"model": "deepseek/deepseek-r1",
"object": "chat.completion",
"created": 1737410104,
"choices": [
{
"logprobs": null,
"finish_reason": "stop",
"native_finish_reason": "stop",
"index": 0,
"message": {
"role": "assistant",
"content": "To find the least odd prime factor of \\(2019^8 + 1\\), we start by noting that if a prime \\( p \\) divides \\(2019^8 + 1\\), then \\(2019^8 \\equiv -1 \\pmod{p}\\). This implies \\(2019^{16} \\equiv 1 \\pmod{p}\\), so the order of 2019 modulo \\( p \\) is 16. By Fermat's Little Theorem, the order must divide \\( p - 1 \\), hence \\( p \\equiv 1 \\pmod{16} \\).\n\nThe primes congruent to 1 modulo 16 are 17, 97, 113, 193, etc. We check the smallest primes:\n\n1. **Prime 17**: Compute \\(2019 \\mod 17\\):\n - \\(2019 \\equiv 13 \\pmod{17}\\)\n - Calculate \\(13^8 \\mod 17\\):\n - \\(13^2 \\equiv 16 \\pmod{17}\\)\n - \\(13^4 \\equiv 16^2 \\equiv 1 \\pmod{17}\\)\n - \\(13^8 \\equiv 1^2 \\equiv 1 \\pmod{17}\\)\n - Thus, \\(2019^8 + 1 \\equiv 1 + 1 = 2 \\pmod{17}\\), so 17 is not a factor.\n\n2. **Prime 97**: Compute \\(2019 \\mod 97\\):\n - \\(2019 \\equiv 79 \\pmod{97}\\)\n - Calculate \\(79^8 \\mod 97\\):\n - \\(79^2 \\equiv 33 \\pmod{97}\\)\n - \\(79^4 \\equiv 33^2 \\equiv 22 \\pmod{97}\\)\n - \\(79^8 \\equiv 22^2 \\equiv 96 \\pmod{97}\\)\n - Thus, \\(2019^8 + 1 \\equiv 96 + 1 = 97 \\equiv 0 \\pmod{97}\\), so 97 is a factor.\n\nSince 97 is the smallest prime congruent to 1 modulo 16 that divides \\(2019^8 + 1\\), the least odd prime factor is \\(\\boxed{97}\\).",
"refusal": ""
}
}
],
"system_fingerprint": "fp_1c5d8833bc",
"usage": {
"prompt_tokens": 20,
"completion_tokens": 3245,
"total_tokens": 3265
}
}{
"id": "gen-1737410152-IN7YAcPADoiqZ8wALgjF",
"provider": "OpenAI",
"model": "openai/gpt-4-turbo",
"object": "chat.completion",
"created": 1737410152,
"choices": [
{
"logprobs": null,
"finish_reason": "tool_calls",
"native_finish_reason": "tool_calls",
"index": 0,
"message": {
"role": "assistant",
"content": "{\n \"binary_pass_fail\": true,\n \"additional_feedback\": \"The submission accurately determined the least odd prime factor of 2019^8 + 1 as 97, following a thorough mathematical approach.\"\n}",
"refusal": null,
"tool_calls": [
{
"index": 0,
"id": "call_QxHkPSxzDQ03deyQeeNX3eSm",
"type": "function",
"function": {
"name": "get_eval_rating",
"arguments": "{\"binary_pass_fail\": true, \"additional_feedback\": \"The submission accurately determined the least odd prime factor of 2019^8 + 1 as 97, following a thorough mathematical approach.\"}"
}
}
]
}
}
],
"system_fingerprint": "fp_f17929ee92",
"usage": {
"prompt_tokens": 645,
"completion_tokens": 109,
"total_tokens": 754
}
}