Input
Output

Find the least odd prime factor of 20198+12019^8+1.


To find the least odd prime factor of (2019^8 + 1), we start by noting that if a prime ( p ) divides (2019^8 + 1), then (2019^8 \equiv -1 \pmod{p}). This implies (2019^{16} \equiv 1 \pmod{p}), so the order of 2019 modulo ( p ) is 16. By Fermat's Little Theorem, the order must divide ( p - 1 ), hence ( p \equiv 1 \pmod{16} ).

The primes congruent to 1 modulo 16 are 17, 97, 113, 193, etc. We check the smallest primes:

  1. Prime 17: Compute (2019 \mod 17):

    • (2019 \equiv 13 \pmod{17})
    • Calculate (13^8 \mod 17):
      • (13^2 \equiv 16 \pmod{17})
      • (13^4 \equiv 16^2 \equiv 1 \pmod{17})
      • (13^8 \equiv 1^2 \equiv 1 \pmod{17})
    • Thus, (2019^8 + 1 \equiv 1 + 1 = 2 \pmod{17}), so 17 is not a factor.
  2. Prime 97: Compute (2019 \mod 97):

    • (2019 \equiv 79 \pmod{97})
    • Calculate (79^8 \mod 97):
      • (79^2 \equiv 33 \pmod{97})
      • (79^4 \equiv 33^2 \equiv 22 \pmod{97})
      • (79^8 \equiv 22^2 \equiv 96 \pmod{97})
    • Thus, (2019^8 + 1 \equiv 96 + 1 = 97 \equiv 0 \pmod{97}), so 97 is a factor.

Since 97 is the smallest prime congruent to 1 modulo 16 that divides (2019^8 + 1), the least odd prime factor is (\boxed{97}).


Evaluation

Evaluation ID
a76c4d5d-b7b0-49aa-a5fa-beaf2d413246
Created
January 20, 2025

Evaluation Rating

Binary Pass/Fail
Pass
Additional Feedback
The submission accurately determined the least odd prime factor of 2019^8 + 1 as 97, following a thorough mathematical approach.
Raw Output
{
  "id": "gen-1737410104-q92sjn1Vq9KQfYF4sAqi",
  "provider": "DeepSeek",
  "model": "deepseek/deepseek-r1",
  "object": "chat.completion",
  "created": 1737410104,
  "choices": [
    {
      "logprobs": null,
      "finish_reason": "stop",
      "native_finish_reason": "stop",
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "To find the least odd prime factor of \\(2019^8 + 1\\), we start by noting that if a prime \\( p \\) divides \\(2019^8 + 1\\), then \\(2019^8 \\equiv -1 \\pmod{p}\\). This implies \\(2019^{16} \\equiv 1 \\pmod{p}\\), so the order of 2019 modulo \\( p \\) is 16. By Fermat's Little Theorem, the order must divide \\( p - 1 \\), hence \\( p \\equiv 1 \\pmod{16} \\).\n\nThe primes congruent to 1 modulo 16 are 17, 97, 113, 193, etc. We check the smallest primes:\n\n1. **Prime 17**: Compute \\(2019 \\mod 17\\):\n   - \\(2019 \\equiv 13 \\pmod{17}\\)\n   - Calculate \\(13^8 \\mod 17\\):\n     - \\(13^2 \\equiv 16 \\pmod{17}\\)\n     - \\(13^4 \\equiv 16^2 \\equiv 1 \\pmod{17}\\)\n     - \\(13^8 \\equiv 1^2 \\equiv 1 \\pmod{17}\\)\n   - Thus, \\(2019^8 + 1 \\equiv 1 + 1 = 2 \\pmod{17}\\), so 17 is not a factor.\n\n2. **Prime 97**: Compute \\(2019 \\mod 97\\):\n   - \\(2019 \\equiv 79 \\pmod{97}\\)\n   - Calculate \\(79^8 \\mod 97\\):\n     - \\(79^2 \\equiv 33 \\pmod{97}\\)\n     - \\(79^4 \\equiv 33^2 \\equiv 22 \\pmod{97}\\)\n     - \\(79^8 \\equiv 22^2 \\equiv 96 \\pmod{97}\\)\n   - Thus, \\(2019^8 + 1 \\equiv 96 + 1 = 97 \\equiv 0 \\pmod{97}\\), so 97 is a factor.\n\nSince 97 is the smallest prime congruent to 1 modulo 16 that divides \\(2019^8 + 1\\), the least odd prime factor is \\(\\boxed{97}\\).",
        "refusal": ""
      }
    }
  ],
  "system_fingerprint": "fp_1c5d8833bc",
  "usage": {
    "prompt_tokens": 20,
    "completion_tokens": 3245,
    "total_tokens": 3265
  }
}
Raw Rating Output
{
  "id": "gen-1737410152-IN7YAcPADoiqZ8wALgjF",
  "provider": "OpenAI",
  "model": "openai/gpt-4-turbo",
  "object": "chat.completion",
  "created": 1737410152,
  "choices": [
    {
      "logprobs": null,
      "finish_reason": "tool_calls",
      "native_finish_reason": "tool_calls",
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "{\n  \"binary_pass_fail\": true,\n  \"additional_feedback\": \"The submission accurately determined the least odd prime factor of 2019^8 + 1 as 97, following a thorough mathematical approach.\"\n}",
        "refusal": null,
        "tool_calls": [
          {
            "index": 0,
            "id": "call_QxHkPSxzDQ03deyQeeNX3eSm",
            "type": "function",
            "function": {
              "name": "get_eval_rating",
              "arguments": "{\"binary_pass_fail\": true, \"additional_feedback\": \"The submission accurately determined the least odd prime factor of 2019^8 + 1 as 97, following a thorough mathematical approach.\"}"
            }
          }
        ]
      }
    }
  ],
  "system_fingerprint": "fp_f17929ee92",
  "usage": {
    "prompt_tokens": 645,
    "completion_tokens": 109,
    "total_tokens": 754
  }
}